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ABSTRACT 

This work investigates the  effects of compressibility on a stationary mode of instability of 
the three-dimensional bound,.,y layer due to a rotating disc. The aim is to determine whether 
this mode will be important in the finite amplitude destabilization of the boundary layer. 
This stationary mode is characterized by the effective velocity profile having zero shear stress 
at the wall. Triple-deck solutions are presented for an adiabatic wall and an isothermal wall. 
It is found that this stationary mode is only possible over a finite range of Mach numbers. 
Asymptotic solutions are obtained which describe the structure of the wavenumber and the 
orientation of these modes as functions of the local Mach number. The effects of nonlinearity 
are investigated allowing the finite amplitude growth of a disturbance close to the neutral 
location to be described. The results are compared with the incompressible results of P. Hall 
(Proc. R. SOC. Lond. A406, 93-106 (1986)) and S. 0. MacKerrell (Proc. R. SOC. Lond. 
A413, 497-513 (1987)). 

'This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

The problem considered here is that of the instability of the compressible boundary 
layer on a rotating disc. The flow due to a rotating disc has a three-dimensional boundary 
layer and exhibits a crossflow instability. This boundary layer is similar to that which 
occurs on swept wings and so can be used to predict the possible modes of instability 
of boundary layers on swept wings. Interest in these types of instabilities has increased 
recently due to the development of laminar flow wings. Our aim here is to investigate 
the effects of compressibility on a mode of instability which will be described below. For 
incompressible three-dimensional boundary layers this particular mode of inst ability may 
play a crucial role in the finite amplitude destabilization of the boundary layer. 

One of the first experimental and theoretical investigations of instabilities of three- 
dimensional boundary layers was conducted by Gregory, Stuart and Walker (1955). Using 
the china clay visualization technique they observed a set of stationary vortices in the form 
of spiral streaks rotating with the disc. The number of vortices observed was 28-31 with 
the angle between the tangent at a given point on the vortex and the normal to the radius 
vector being 13". Linear stability analysis was used by Gregory, Stuart and Walker (1955) 
to explain the nature of the instability. This was described as an inviscid disturbance 
with an effective velocity profile having zero velocity at an inflexion point. The theory 
presented enabled the orientation and the wavenumber of the vortices to be predicted. 
The orientation of the vortices predicted by this theory was found to be consistent with 
the experimental observations but the vortex wavenumber predicted was about four times 
the value observed. 

Later linear stability investigations following on from that of Gregory, Stuart and 
Walker (1955) of the incompressible flow due to a rotating disc were given by Cebeci and 
Stewartson (1980), Malik, Wilkinson and Orszag (1981), Mack (1985) and Malik (1986). 
The results of Malik, Wilkinson and Orszag (1981) show that the effects of streamline 
curvature and Coriolis force may be important. (This result was first found in the context 
of the Ekman boundary layer, by Faller and Kaylor (1966) and Lilly (1966).) Malik (1986) 
obtained the finite Reynolds number continuation of the inviscid mode of Gregory, Stuart 
and Walker (1955) and showed that at large Reynolds numbers an additional stationary 
mode can occur. The structure of this mode was subsequently investigated by Hall (1986) 
who showed that it has a triple-deck structure and that it corresponds to an effective ve- 
locity profile having zero shear stress at the wall. Later MacKerrell (1987) investigated 
the nonlinear development of this stationary mode and obtained the important result that 
it is destabilised by nonlinearity and thus may cause the premature growth of instability 
waves if it is forced above a certain threshold level. 
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Visible evidence that an additional stationary mode of instability may occur was given 
by the experiments of Fedorov et al. (1976). They observed a stationary vortex structure 
having 14-16 vortices with the angle between the tangent on a point of the spiral and the 
normal to the radius vector being 20". Thus this structure has a much lower wavenumber 
than that of the Gregory, Stuart and Walker mode and also a different wave angle. 

The main aim of the present paper is to see how the stationary mode of Hall (1986) 
develops into the compressible regime. Most importantly we want to see how far into the 
compressible regime the potentially important subcritical nature of the instability persists. 
We show that the mode of instability is in fact possible only over a finite range of Mach 
numbers. 

In Section 2, we give the full compressible equations governing the flow of interest and 
the boundary conditions to be satisfied. These equations are solved in Section 3 for large 
Reynolds number using a Dorodnitsyn-Howarth transformation to give the basic three- 
dimensional compressible flow due to a rotating disc. We consider two cases of an adiabatic 
disc and an isothermal disc. In Section 4, this basic flow is perturbed by adding a small 
three-dimensional disturbance to it and a nonlinear stability analysis is presented. The 
triple-deck structure of the disturbed flow is described. Although the triple-deck scalings 
here differ from those of the classic triple-deck the same principles apply. A solvability 
condition on the linear lower deck problem produces an eigenrelation, the solutions of 
which are discussed. In order to obtain an equation for the disturbance amplitude we 
perturb the solution a small distance from the neutral location. A solvability condition in 
the lower deck problem produces an equation for the disturbance amplitude, the solution 
of which is discussed. Finally, in Section 5 the effects of compressibility are discussed and 
the results are compared to those obtained for an incompressible flow by Hall (1986) and 
MacKerrell (1987). 

2. THE GOVERNING EQUATIONS 

We will consider the steady flow of a compressible viscous fluid above an infinite flat 
disc rotating with an angular velocity 0 about the z-axis. Thus, the fluid motion is induced 
by the rotation of the disc and the effects of streamline curvature and Coriolis force must 
be taken into account. The problem is formulated in terms of cylindrical polar coordinates 
to take advantage of the axisymmetric motion which occurs in the basic flow. Thus, we 
introduce the non-dimensional coordinates and velocities (r,O, z) and (vr, ve, v z ) ,  with the 
z-axis being normal to the surface of the disc. The lengths r and z and the velocities have 
been made dimensionless with respect to some reference length .t and ne, respectively. 

Since the fluid is compressible the variation of the density of the fluid must be consid- 
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ered. Hence, the Navier-Stokes equations and the continuity equation are not sufficient to 
solve the problem. Thus, we must also have an equation of state and an energy equation. 
The Reynold number for the flow is defined by 

where jjm and p, are the free-stream values of the density and the shear viscosity of the 
fluid, respectively. The Reynolds number is taken to be large in the following analysis. 
The density and temperature of the fluid are non-dimensionalized with respect to their free 
stream values, while the shear viscosity and the bulk viscosity are both non-dimensionalized 
with respect to the free-stream value of the shear viscosity. Finally, the pressure is non- 
dimensionalized with respect to pmn212. The continuity and Navier-Stokes equation for a 
steady compressible fluid in a reference frame rotating with angular velocity n are 

(2.2u, b, c, d )  

Here p is the density, p is the fluid pressure, p and p’ are the shear and bulk viscosities, 
respectively and V - 2 is defined by 

l a  l a v e  dv, V = --(rv,) + -- + -. 
r d r  r de a~ 

We consider the fluid to be a perfect gas then the equation of state is 

(2.2e) 

( 2 . 3 ~ )  
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where T denotes the temperature of the fluid. The ratio of specific heats of the fluid is 
defined by 

7 = -  CP (2.3b) 

where cp is the specific heat at constant pressure and c, is the specific heat at constant 
volume. The free-stream Mach number is defined by 

C, 

( 2 . 3 ~ )  

where T ,  is the free-stream temperature and R is the gas constant, which can be expressed 
as R = cp - c,. Using (2.3) the energy equation for a steady flow may be written in terms 
of the temperature and is given by 

(7 - 1)M: 
1 l a  aT 1 a aT aT 

[ - - ( r k z )  + --(k-) + -&--)I, R(7 - 1)M& r dr r 2 a e  a e  az aZ + ( 2 . 4 ~ )  

where k is the coefficient of thermal diffusivity and has been non-dimensionalized with 
respect to p,cp. This is related to the Prandtl number o by 

P 
k' 

o = -  (2.4b) 

The dissipation function @ in (2.4a) is given by 

The boundary conditions for the flow are that the no-slip conditions must be satisfied at 
the surface of the disc and there should be no motion far away from the disc. Hence, we 
have 

v, = vg = v, = 0 at z = 0, 

and 
v, -+ 0 and + -r as z + 00. 

( 2 . 5 ~ )  

(2.5b) 

The density, temperature, and viscosities must approach their free-stream values as z 4 00, 

which, since they are non-dimensionalized with respect to these values, are equal to unity. 
We consider two possibilities for the boundary condition on the temperature at the surface 
of the disc. Either, the surface is adiabatic (i.e. thermally insulated) and then 

aT - = 0 at z = 0, 
a Z  

( 2 . 6 ~ )  
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or the surface is isothermal (i.e. the temperature of the surface is prescribed). In this case 
we suppose that the surface temperature is TBW then the boundary condition is 

T = TBw at z = 0. (2.6b) 

3. THE BASIC FLOW 

We now consider the three-dimensional solution of equations (2.2) - (2.5) for the steady 
compressible boundary layer flow over a rotating disc, for which the Reynolds number will 
be large. We define the non-dimensional coordinates 

(3.lb) 

with the pressure, density, shear viscosity, bulk viscosity, conductivity, and temperature 
denoted by p ~ , p ~ ,  p g , & ,  k g ,  TB, respectively. This flow will be defined by the governing 
equations (2.2) - (2.5) with a/ae = 0, since the flow will be axisymmetric. We substitute 
the basic flow variables (3.1) into the governing equations and neglect terms of O(R-') in 
the Navier-Stokes equations and O(R-?) in the energy equation. Hence, for large Reynolds 
number the basic flow quantities are determined from the following equations: 

~ P B  PBUB +-- - 0, a u B  awB a P B  
p B ( K  + -) + U B -  + W B -  

a z B  ar  a Z B  r 

The boundary conditions are 

UB = VB = WB = 0 at ZB = 0, (3 .34  

5 



(3.3c) 

Since we require some properties of the basic flow in the later stability analysis we proceed 
to find the solution of (3.2) and (3.3). For an incompressible flow the basic flow can be 
given by KBrmdn's steady solution (see KBrm&n's (1921)). 

It is found that the present problem can be reduced to the corresponding incompressible 
one by use of the Dorodnitsyn - Howarth transformation which will be described below. 
(Riley (1964) obtains the same results using the Von Mises transformation.) Since the 
fluid is stationary everywhere outside the boundary layer the pressure gradient dpB/dr 
will be zero everywhere. Thus, from (3.2d,e) and the boundary conditions p~ is constant 
and equal to (yM:)-'. We assume the Chapman viscosity law 

p = CT, (3.44 

where C is a constant, then the energy equation is decoupled from the momentum equa- 
tions. We take C = p g w / T ~ w ,  where the subscripts w indicate values at  the wall, then 
the law (3.4a) will be most realistic close to the wall. We use Sutherland's law to evaluate 
P B W ,  hence 

(3.4b) 

where the constant C1 is given by C1 = 198.6"R. Since the pressure is constant from 
(3.2e) PBTB is constant and so the Chapman viscosity law (3.4a) gives p ~ p g  is constant. 
From the boundary conditions as ZB + 00 we find that p ~ p g  = C. It is as a result of this 
expression that the energy equation is decoupled from the momentum equations. Thus, 
we have 

and 

(3.54 

(3.5b) 

We make the Dorodnitsyn - Howarth transformation (see for example Stewartson 
(1964)) and introduce the coordinate 

and the stream function $, where 

(3 .6~)  

(3.6b, c) 
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where alar denotes a derivative with $ held constant. Then the equations (3.2) become 

a2 la$ 
2vB - r = -(--), 1 a $ a  la$ lag a la$ v i  --- -- ---- -- 

r aq a r ( r  aq)  r ar aq ( r aq 1-7- dq2 r a q  

(3.8b) 

where a prime denotes differentiation with respect to q.  We also define the function G(q) 

by 
V B  = rG(q) .  (3.8~) 

Hence, using (3.8) from (3.7a,b) we find that the functions H and G satisfy 

G" + H'(G + 1) - HG' = 0, 

(3.94 

(3.9b) 

H'(0) = G(0) = 0, (3.9c) 

H'(w) = 0, G(m) = -1. (3.9d) 

These are the equations satisfied by Kdrmdn's steady solution which may be solved nu- 
merically. Two results from the solutions of (3.9) that we require in the later analysis 
are 

(3.9e) 
- H" (0) 

2 
= 0.51023andvo = G'(0) = -0.61592. - uo = 

The energy equation (3.7~) becomes 

rH' BTB r2 Tfs -- + HTL) = - (H11)2 + + 1 
4 47 - l)M&* 

The solution to this equation can be found in terms of a heat conducting term and a 
viscous dissipation term. (See, for example, Riley (1964)). The solution can be written as 

(3.10) 
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where the functions 41 and 4 2  satisfy 

I 4; - QH4: = 0, (3.11) 

4; - Q H ~ ;  + ~H'q52 = -Q((H")~ + 4(G')2). (3.12) 

For the special case of a model fluid with Q = 1, exact solutions of 4 2  can be obtained. 
Asymptotic solutions are given by Riley (1964) for large and small values of Q. Note that 
if Q is large the thermal boundary layer is much thinner than the viscous boundary layer 
and conversely, if Q is small the thermal boundary layer is much thicker than the viscous 
boundary layer. In the analysis to follow we will consider Q = 0.72, which is the value for 
air. For an adiabatic plate the boundary conditions are 

4:(0) = 4;(0) = 0, 

41(00) = 4 2 ( 4  = 0. 

Then, we find that the solution of (3.11) is d1 0. For Q = 1, the solution of (3.12) is 
given by 

g$2 = 2 - - ("I2 - 2(G)2, 
2 

and if Q = 0.72, numerically we find that 42(0) = 1.7899. While, if there is heat transfer 
at the wall then the boundary conditions are I 

41(m) = 4 2 ( 4  = 0. 

In this case, the solution of (3.11) is given by 

I where 

(3.13a) 

(3.13b) 

(3.13~)  

For u = 0.72, A is found numerically to be A = 0.3286. The solution of (3.12) has to be 
I obtained numerically, except when Q = 1 which gives 

and for Q = 0.72 we find numerically that 4\(0) = 0.9348. We will require the results for 
42(0),4k(0) and A in the later analysis. 
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4. THE WEAKLY NONLINEAR STABILITY ANALYSIS 

We consider the lower branch stationary viscous modes described by Hall (1986) and 
follow the analysis of MacKerrell (1987). We perturb the basic flow described in Section 3. 
The disturbance will have a triple-deck structure identical to that described by Hall (1986) 
for incompressible flow over a rotating disc. This will be based on the small parameter e, 
which is defined by 

1 = R-iii. 

The upper, main, and lower decks are of thickness of O(e4),0(e8) and O(eg), respectively. 
The structure of the disturbances in the main and upper decks is essentially the same as 
that found by Smith (1979), who investigated lower-branch disturbances to Blasius flow. 
It is found that the viscous effects are only important in the lower deck. The upper deck 
flow structure is essentially inviscid and irrotational and provides a pressure gradient which 
drives the lower deck. In the main deck the flow structure is inviscid with no variation in 
pressure across the layer. The lower deck is a thin viscous layer which is required to satisfy 
the no-slip boundary conditions at the disc surface. The disturbance is found to have 
wavenumbers in the radial and azimuthal directions of O(c4). Thus, we seek stationary 
modes of instability with three-dimensional solutions proportional to 

i r  
E = e x p ( y [ j  e +)dr +pel). 

The wavenumbers Q and p expand as 

a =  a o + e 2 a 1 + e  3 a t + " ' ,  

as in the corresponding incompressible problem. Hence, we add disturbances proportional 
to E to the basic flow described in Section 3. The forms of the expansions of the disturbance 
will be different in each deck and are essentially fixed by balancing the convection and 
viscous terms in the radial momentum equation in the lower deck. 

We define the perturbed velocities, pressure, density and temperature by 

(P,P,T) = (PB,PB,TB) + ( p , P ~ , ~ p ) ,  (4.lb) 

where the perturbation quantities are assumed to be small. The perturbation terms will 
be in the form of fundamental terms and harmonic terms arising from the nonlinear nature 
of the governing equations. Initially, we are seeking the solution at the position of neutral 
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stability so a and ,4 will be real. Later we will consider the solution close to the position 
of neutral stability and then cr will be complex. We begin by obtaining the solution in the 
upper deck. 

4.1. The Upper-Deck Solutions 

We introduce the coordinate 2 where z = e4Z so that 2 is 0(1) in the upper deck. The 
radial velocity perturbation expands ass 

- - 
US0 u3l . . . ) E + 6 2 ( ~ 2 0 + & T 2 1 + " ' ) E 2  + 6 3 ( -  + - + . . * ) E 3  
E3 &2 

u = ~ ( E ~ T ~  + s4Tl + 
- - 
UlO u11 

E2 
+b3(, + - + . . - )E + 0(6~) + c.c. 

(4 .2~)  
where c.c denotes complex conjugate of the preceding expression and 6 is a small amplitude 
which we shall later relate to E.  The functions Uo,U20 etc. depend on r and 2. The 
azimuthal velocity, density, and temperature perturbations have similar forms to (4.2a). 
Note that there are no mean flow terms, i.e., terms independent of rand 8 .  

The vertical velocity and pressure perturbations have mean flow terms and are given 

- -  

by 

w = S(ESW, + E 4 w 1  + ->E + 6 2 ( ~ 2 0  + & w ~ ~  + . . . ) ~ 2  + ' 6 2 ( E ~ ~ ~  + & 6 ~ ~ ~  + . . .) 
- - - - 

WlO w11 + - + . . .)E + o(64) + c.c. + 6 3 ( - + - + . - )  w30 w3l E'+&'(- 
E3 E2 &3 E2 

P =  

Using the 

(4.2b) 
6 ( e3Po + c4P1 + . a .)E + 6 2 -  ( P~~ + E F ~ ~  + . . ) E ~  + b2 ( dTmO + c7Pml + . . .) 

(4.2~) 
Chapman viscosity law (3.4) the shear viscosity, bulk viscosity and thermal 

conductivity perturbations have the following form: 

(4.2d) 

From the solution for the basic flow described in Section 3, in the upper deck U B  = 0,  W B  = 
- t , p B  = ~ , T B  = 1 and p~ is constant. We substitute the perturbed flow (4.1) with the 
perturbed terms given by (4.2) into the governing equations (2.2)-(2.5). We first consider 
the linear solutions and equate terms proportional to 6E in the resulting equations. It is 
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found that the solution for the first order terms, which decays to zero as 2 + 00, is given 
bv 

- - PO = f e - r z ,  Po = ML f e - r z ,  To = (7 - 1)ML f e - r z .  

Here f ( r )  is an amplitude function to be determined and 

where M, is a local Mach number defined by Mr = rM,. Hence, from (4.4), for three- 
dimensional modes to exist for neutral wavenumbers we must have 

a; + -(1- Po2 M,") > 0. r2 (4.5) 

Thus, for IMrI < 1 there will exist three-dimensional solutions for all real values of Q and 
Po. However, for M, > 1 three-dimensional modes will only exist for r2 > 0. We shall see 
later that from Hall (1986), in order for the three-dimensional stationary modes to exist 
the effective wall shear must vanish. Thus, we choose to look for stationary modes where 
the effective wall shear vanishes at zeroth order. The effective wall shear at zeroth order 
is 

Hence, from the basic solution described in Section 3 the condition (4.6a) is 

(4.6~) 

(4.6b) 

where a0 and TO are defined by (3.9e) and the solution is neutral at the position r where 
(4.6) holds. This is the same result found by Hall (1986) for the incompressible problem. 
The conditions (4.5) and (4.6) imply that for the stationary three-dimensional modes of 
instability we are seeking to exist 

IM,I < 1.567. (4.7) 

Thus, these modes will not be present in high Mach number flows. 
b It is found that the next order terms in E have the same form as those given by (4.3) but 

in the upper deck with the expansions in the main deck and will be a linear function of 
f (r). Analytic solutions can also be found for the higher order terms, but are not required 
in the present analysis. 

I with amplitude g ( r ) .  This unknown amplitude is determined from matching the expansions 

L 
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If we now consider the terms proportional to b2E2 in the governing equations we find 
that the first harmonic terms are 

Here f2(r) is an unknown amplitude function, which will later be found in terms of f ( r ) .  
There is no contribution from the nonlinear terms until the solution for P25. It is found 
later that the harmonic terms proportional to G3E3 are not involved in the present analysis 
so we shall omit the solutions for these terms. Thus, we consider next the O(6'E) terms 
which arise from the nonlinear interaction of the O(6E-l) terms with the 0(b2E2) terms 
and the O(6E) terms with the 0(b2E0) t e rm.  In a similar way to the solutions given above 
we find that 

- QO - f 4  -rz - irf4 ,-rz 
~ 1 0  = - f4e-rz, ~ 1 0  = -e , ~ 1 0  = , 

P O  r 
- 
pl0 = fqe-rz, pl0 = M:f4e-I", Tlo = (7 - l ) ~ & f d e - ~ ' ,  

where f4 is an unknown function of f (r). We note that the solutions for the velocities 
and pressure have the same form as those obtained for the incompressible problem by 
MacKerrell (1987), but where I' now depends on M, as well as on QO and PO. 

The solutions in the main deck must match with those obtained in the upper deck as 
z + 0. 

4.2. The Main-Deck Solutions 

From section 3 the boundary layer variable is defined by zg = E - ~ z ,  where zg is 0(1) 
in this layer. The non-dimensional radial velocity perturbation has the form 

u = 6(!! + a1 + . . . ) E +  b2( -  020 + - 6 2 1  + . . - ) E 2  + 6 ' ( ~  Qmo 4- * - * )  
E E4 E3 E 

+ P ( ~  QSO + gB 031 + . . . p 3  + P ( ~  $10 + - $11 + . . . )E  + o(64) + c.c. ( 4 . 8 ~ )  

with a similar expression for V. The vertical velocity perturbation has the following 
expansion: 

E e6 

w = 6 ( ~ ~ i i r ~ + ~ ~ i i r ~ + . ~ . ) ~ + 6 ~ ( i i r ~ ~ + & i i r ~ ~ + . . . ) ~ ~ + d  2 6  ( E  amo+&'Gml+*'.) 

&so G3l a10 a11 

&3 E2 E3 E2 
+p(- + - + . . . ) ~ 3  + 67-  + - + . . - ) E  + o(64) + c.c. 

(4.8b) 
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with a similar expression for P. The density and temperature perturbations are similar to 
each other. The expansion for the density perturbation is given by 

A 2 $mO Bml 

e Es e2 
2 $20 $21 - $2 + al + . . )E  + 6 (7 + 7 + . . . )E2 + 6 (- + - + . .) PP - 

+6 3 (-- as0 + P,, + . . . ) ~ 3  + 6 3 (- $10 + - $11 + . . . ) E  + o(64) + c.c. 
&7 66 E7 &e 

(4 .8~ )  

We substitute the perturbed flow with the expansions (4.8) into the governing equations. 
Equating coefficients of the linear terms proportional to 6E gives the following solutions 
which match with the upper deck solutions as ZB -+ 00 and 2 + 0: 

where & denotes the density of the basic flow solution. The normal velocity & satisfies 
the no-slip condition at ZB = 0, but & and $0 do not. As mentioned previously, from Hall 
(1986), in order to have stationary disturbances we must choose a0 and P o  so that the wall 
shear is zero at zeroth order. Then a000 + @o$Oiro/r -+ 0 as ZB -+ 0. At the next order of e 
the solutions which match with the upper deck solutions have the same form as (4.9) but 
with amplitude f replaced by g. Thus, we have i1 = g. 

We find that the first order terms proportional to 62E2 have the same forms as (4.9) 

but with a 0 , P O  and f replaced by 2 ~ , 2 @ 0  and f2 ,  respectively. Similarly, the first order 
terms proportional to bSE which match with the solutions in the upper deck have the same 
form as (4.9) but with the amplitude f replaced by f4. In both cases the nonlinear effects 
have no contribution until the third order solutions. 

We now require a lower deck to reduce the slip velocities to zero at the surface of the 
disc. The viscous terms in the governing equations will now play a part in the first order 
solutions at 0(6 E),0(b2E2)  and O(bSE) and the nonlinear effects will arise at the solution 
of the next order terms in E at 0(b2E2) and O(@E). 
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4.3. The Lower-Deck Expansions 

We introduce the vertical coordinate 6 where z = E'( so that ( is 0(1) in the lower 
deck. For small values of ZB we can expand the basic flow quantities u B ,  v B ,  & Then, in 
terms of ( 

U B  = &CUB1 + E2f221B2 + ' ' ' VB = &(UBI + E2e2VB2 + ' ' , 
(4.10) 

& = Row + EtR01-k E2 t2&2  + - * - , TB = TBW + E ( T B ~  + &2(2T~2 + * * , 
where &w = & ( Z B  = 0) .  The other coefficients are defined by 

1 a j U B  
U B j  = 7- 

3. az:, 1 '  zs=0 

and similarly for V B j ,  &j ,  T ~ j , j  = 1,2 , .  . .. The coefficients will depend on r and then the 
condition of zero wall shear can be written as aOUB1 + P O V B l / r  = 0. Hence, in order for 
the expansions of the disturbance in the lower deck to match with those in the main deck 
as ( -+ 00, from (4.9) and (4.10) the radial velocity disturbance must have the form 

rf UO 
& P O  & 

U = 6 ( T ( u B l + 2 & ( u B 2 + " . )  + - + ? Y l + & U 2 + * * * ) E  

+0(64) + c.c. 
(4.1 la) 

The azimuthal velocity, density and temperature perturbations have similar expressions to 
(4.11a) in the lower deck. The normal velocity perturbation has the form 

ir j € 6  P O  P O  w =6(-- [ ( a O u B 2  + - v B 2 )  e2 + E ( ~ o U B S  -k -VBS)(' + - -1 + &'wo + S7w1 + - ) E  Po2 r r 

(4.11 b) 
while the pressure perturbation is given by 
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P = ~ ( E S ~ + E ~ ~ + . * * ) E + ~ ~ ( ( ~ ~ + E P ~ ~ + * * * ) E ~ + E ~ O P , ~ + & ~ ~ P ~ ~ + . * ~ )  

+ P ( ( ~  pso + e2 P S l  + . . . )ES + f 4  + - Pll + - .  . )E)  + 0p4) + C.C. (4.1 1 c) 

Note that the mean flow terms in (4.11b) are larger than for the incompressible case. The 
perturbed flow given by (4.11) with the basic flow quantities given by (4.10) is substituted 
into the governing equations (2.2) - (2.5). 

e e2 

4.4. The Linear Einenrelation 

We equate coefficients of 6E in the governing equations for the perturbed flow in the 
lower deck. It is found that 

(4.12a) 

where U is a parabolic cylinder functions (see, for example, Abramowitz and Stegun (1964)) 
and 

(4.126) 

from the r and 6 momentum equations of the basic flow solution and using the condition 
(4.6a) on the effective wall shear. Vi is determined from the following relation obtained 
from the continuity equation: 

P O  aouo + -vo = 0. 
r 

i P O  ra0 

PBWTBW r 2T;wP;w ’ A =  ((YOUB2 + -vB2) = -i 

From the energy equation we find that 

and hence from the equation of state (2.3a) 

(4.12~) 

We note that for an adiabatic wall TI0 and plo will be equal to zero. 
It is found that the functions U1 and VI cannot be determined until the solution for Wo 

is obtained. This is achieved by solving a third order ordinary differential equation similar 
to equation (4.16) in Hall (1986). Hence, Wo is given by 
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where s = Ai( .  The function F1 satisfies the equation 

while Fz, F3 and F4 satisfy the same equation as Fl but with the right-hand-side replaced 
by U (0, f i s ) ,  $ [sU (0, f io is) ]  and s4U (0, f i o i s ) ,  respectively. The boundary conditions 
are & ( O )  = &(w) = 0, i = 1,2,3,4. The continuity equation relating U2 and Vz is 

Satisfying the boundary conditions at 6 = 0 in (4.13) and using (4.12) gives the eigenrela- 

Since the right-hand-side of (4.14) is proportional to (1 + i) and a0 and PO are real we have 

- 3 QIo 

The values of Fi(0) and 2F;(O)/U(O,O) evaluated by Hall (1986) are given by 

h 1 Fi (0) 
P0"U (090) 

(4.15) 

Fi(0) = 0.5991, 

The values for Fi(0) and F,(O) depend on Q and can be obtained in the same way as Hall 
(1986). For o = 0.72 we obtain 

Fl(0) = 0.0192, 

Fi(0) = 1.6972. 

We shall consider solutions of the eigenrelation (4.15) for the cases of an adiabatic wall 
and an isothermal wall separately. 

4.4.1. An Adiabatic Wall 

In this case = 0 so that the eigenrelation (4.15) becomes 

(4.16) 
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using (4.4). Note that if M, = 0 and TBW = 1 the eigenrelation (4.16) reduces to the 
eigenrelation obtained by Hall (1986) for incompressible flow. Now let 

1 
5 ro = (a;+$) . (4.1 7a) 

From the solution of the basic flow described in Section 3, for an adiabatic wall the tem- 
perature at the wall is given by 

(4.17b) 

where 42(0) = 1.7899 for Q = 0.72 and the value of 7 for air is 1.4. We also have from 
(3.6b) and (3.8) that 

(4.17~) 
rE0 

T B w C ~ I ~  ' UB1 = 

(4.17d) 

where TO and80 are given by (3.9e). The eigenrelation (4.16) may be rearranged using (4.6) 
and (4.17) to give 

(4.18) 

Hence, from (4.18) rorf is a function of M,. only. From the results obtained by Hall 
(1986) r0r;  = 1.224 for an incompressible flow where can be regarded as the effective 
wavenumber of the perturbed flow. 

If we now equate real parts in the eigenrelation (4.14) we have, for real values of a0 
and Po, 

which can be rearranged using (4.17) to give 

(4.19) 

-2 
(1 + --2 - M;)-?(l+ $. 'uo (4.20) 

1 8 F; (0) Ti, c'/2 (- QI1 - - ) r z  QIOPl 5 = 2(ror5 )  
P o  Po2 povo I+ 110 UO 

v; 

The value of (al/PO - cr&/Po2)rf was found to be 2.312 by Hall (1986) for incompressible 
.flow. The expression (4.20) gives a correction to the angle between the radius vector 
and the normal to the stationary vortices. The results given by (4.18) and (4.20) are 
the compressible generalization of the incompressible results obtained by Hall (1986). A 
discussion of these results is given in Section 5 for T ,  = 491.6"R. 

~ 

i 
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4.4.2. An Isothermal Wall 

If we manipulate (4.15) we obtain 

From the solution for the basic flow 

where, for o = 0.72,A = 0.3286 and 4)2(0) = 0.9348. From the equation of state = 
-TB1/T’w. In order to evaluate (4.21) for values of M, the temperature of the wall must be 
specified. T’w is the non-dimensional temperature at the wall, defined by TBW = F B ~ / F ~ .  
Hence, T’w is the ratio of the dimensional temperature at the wall to the free-stream 
dimensional temperature. Calculations are obtained for Too = 491.6”R and for a range of 
values of TBW. Figure 1 shows ror+ as a function of Mr for Q = 0.72 for T’w = 1.8,1.0,0.6 
and 0.2, and also for the case of an adiabatic wall. We see that the effective wavenumber 
of the disturbed flow decreases as the local Mach number increases. 

Equating real parts of (4.14) gives the same expression as for the adiabatic wall, i.e., 
(4.20), but of course the values of a0 and Po will be different, ro being given by (4.21). 
Figure 2 shows (cq/ /?o-  a&/@Jrf as a function of Mr for Q = 0.72 for TBW = 1.8,1.0,0.6, 
and 0.2, as well as for an adiabatic wall. We describe the orientation of the stationary 
vortices are given by the angle 80, where 80 is the angle between the tangent to the vortices 
and the normal to the radius vector, then 

tan(- 7r - 8,) = - Lyr = - aor + a2r-f (2 - 3) r i  + . . . . 
2 P Po 

Thus, from Figure 2 we see that 8, decreases as the local Mach number increases for 
TBw 2 0.6 but for highly cooled walls with T’w < 0.6 8, increases as the local Mach 
number increases. The significance of these results is discussed in Section 5. 

We now consider the terms arising from the nonlinear interactions in the governing 
equations in the lower deck. We substitute the expansions (4.11) for the perturbed flow 
into the governing equations (2.2) - (2.5) and equate coefficients of 62E2. We find the 
solutions 

rf2uB1 U (0, f i ( 2 A )  e)  
u20 = - u (070) 9 
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P O  
crou20 + --20 = 0,  r 

respectively. In the same way as for the linear terms, U21 and V21 cannot be determined 
until W 2 0  is obtained. The solution for W20 is the same as that obtained for Wo, (4.12d), 
with aj,Pj, f replaced by 2aj,2Pj, f2, respectively, for j = 0,1,2.  Satisfying the boundary 
conditions at the wall in the continuity equation gives the following expression relating f2 

to f: 

Note that f2 is proportional to f 2.  Fi(0) and Fi(0) may be eliminated from (4.22) by using 
the linear eigenrelation (4.15). 

Now if the same procedure is followed for the solution of the terms proportional to 6'E 
in the perturbation quantities solutions can be obtained for U10, V10, W10 ,  TI0 and ~ 1 0 .  These 
are found to be identical to the linear solutions (4.12) with f replaced by the amplitude 
f4. However, the resulting eigenrelation here is 

~ i r ~ o ~ ~ ~ ~ ; ( o )  i(i - a)rRolaorF;(o) i r 2 f * f 2  P O  
(aOUBZ + -vB2) ,  r 

(4.23) 
where * denotes complex conjugate. Since, from (4.22) f2 is proportional to f and from 
the linear eigenrelation (4.14) the left-hand-side of (4.23) is zero, this implies that f 0. 
In order to determine whether the nonlinear effects are stabilizing or destabilizing we must 
move a sufficient distance from the position of neutral stability. 

We wish to determine an amplitude equation for the disturbance amplitude. This will 
involve derivatives with respect to r and nonlinear terms. In order to obtain the required 
equation, from the results of MacKerrell (1987) we find it is necessary to perturb the 
solution a distance of O(6) from the neutral position. We must also choose 6 = SO that 

W02U (090) I =  Po4 + - 
P02U (0,o) 
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t,,e appropriate nonlinear .erms will arise in 
variable rl by 

he eigenrelation. Thus, we define a new 

r = v +  &TI, (4.24) 

where 7 is the position of neutral stability. Hence, we can write 

a - iao ia1 1 a ---++++-+... 
ar &4 E2 & ar, 

for the terms proportional to E and similarly for the O(E2) and O(ES) terms. Thus, a2 
may be effectively replaced by -ia/drl in the equations previously obtained. The required 
eigenrelation will involve terms proportional to f ,  r l f ,  df/drl and f l f I 2 .  

We replace r from (4.24) in the governing equations and rewrite the expansions of the 
perturbation quantities in the lower deck. For example, 

In order to obtain the required eigenrelation we need to determine Wl. The linear terms 
may be obtained directly from the equation for W1. The terms occurring from expanding 
r are obtained from the O(e) terms obtained by expanding r from (4.24) in the equation 
for Wo. The nonlinear terms will simply be the nonlinear terms occurring in the equation 
for Wlo. Then satisfying the boundary conditions at ( = 0 gives the solvability condition 

-- -Oat  ( = O .  awl 
a€ 
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This condition leads to the following relation: 

(4.25) 
Here b = (7 - 1)M~&.(0)/(4T&,C'/2) and is equal to zero for an adiabatic wall. The terms 
included in the expression RHS are linear terms depending on the functions ;LO, 2~1 ,  I@o, 00,01, f 
and g and so can be written as 

We now follow the incompressible work of MacKerrell (1987) and write the eigenrelation 
(4.25) in the form 

4 
dr1 

(4.26) 

where Ckr and C k i  are constants for k = 1,2,3. Now multiply (4.26) by f *  and add the 
complex conjugate to give 

- = (Clr + G i ) f  If l2  + r l f  (C2r + iC2i) + f (CS, + Gi), 

(4.27) 

In order to simplify (4.27) for C2, # 0 we introduce a new variable r: = rl +Csf/C2,. Then 
(4.27) becomes 

(4.28) 
d 

-&+If 12) = 2Clr 1 f l 4  + 2C2rr:lf 1 2 .  
From (4.25) and the expression for f2,  (4.22), after some manipulation we obtain 

where 
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Figure 3 shows v ~ ~ / ~ C ~ ,  as a function M, for an adiabatic wall and for an isothermal wall 
with TBW = 1.8,1.0,0.6,0.2. We find that C1, is always positive and thus the nonlinear 
effects are destabilizing. We find that +/4C1, is less than the incompressible value of 
T ; ~ ~ / ~ C ~ ~  = 2.357 obtained by Mackerel1 (1987) for both cases of an adiabatic wall and an 
isothermal wall with TBW 2 1.0. However, for an isothermal wall with T'w < 1.0 ?;1s/4Clr 
is greater than the incompressible value at M,. = 0.05. Note that C1, decreases as the local 
Mach number increases for all values of Tsw. Thus, for a highly cooled wall the destabi- 
lizing effects of nonlinearity are greater for a compressible flow than for an incompressible 
flow. From (4.25) 

! In Figure 4 ?;7/4C2r is plotted as a function of M, for an adiabatic wall and for an 
isothermal wall with Tsw = 1.8,1.0,0.6,0.2,0.15. We see that for the range of local Mach 
number where the solutions are valid and for TBW > 0.15 that C2, is negative. Thus, in 

I 

I 
this case the amplitude of the disturbance increases or decreases depending on whether r 
is less than or greater than the neutral value. However, for TBW 5 0.15 we find that C2, 
becomes positive as M, increases. Thus, in this situation the amplitude of the disturbance 
increases as the distance from the neutral radius is increased. For an adiabatic wall and for 
an isothermal wall with Tsw 2 0.6 we find that C2,. decreases as the local Mach number 
increases. However, for an isothermal wall with Tsw < 0.6 there will be a range of the 
local Mach number where C2, increases as the local Mach number increases. We note that 
the incompressible value of T7/4C2r found by MacKerrell (1987) is equal to -0.903 and we 
see that for an adiabatic wall and an isothermal wall with TBW 1 1 that here V7/4C2r is 
less than the incompressible value. 

With the substitutions 

for C2,. # 0, (4.28) becomes 

3 = f 2 x y  + y2, 
dx 

(4.29) 
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I 
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t 

with the positive sign taken if Ctr > 0 and the negative sign taken if C2, < 0. If C2, = 0 
use the substitutions 

so that (4.27) becomes 
- dY = y2 + y. 
dx 

(4.30) 

The solutions of (4.29) and (4.30) are 

Y(Z) = yoe2/(1 + yO(1- e')), c2, = 0, (4.3 1 b) 

(4.3 1 c) Y ( 4  = e-'a/(l/Yo - (fierfx)/2),  Car < 0, 

(4.32~) 

and 
Yo = lf(ri = 0)l22C1,/2(CS,), C2r = 0. (4,326) 

The result (4.31~) is the generalization of the result obtained by MacKerrell (1987) where 
now C1, and C2, depend on T'w and M,. Hence, for Czr < 0 the same results hold for the 
compressible problem as for the incompressible problem. Thus, there exists a critical value 
of the initial amplitude of the disturbance. For values below this critical value (yo = 2 / f l  
the disturbance will grow initially but will eventually decay to zero. Thus, we will have 
a stable solution. For initial amplitudes above this critical value the disturbance becomes 
exponentially large at a particular radius and does not decay. Thus, in this case the 
solution will be unstable. For C2, 2 0 we have growing solutions terminating at finite 
values of the radius. Thus there are no stable solutions for C2, 2 0. Figure 5 shows y as a 
function of x for different values of yo from (4.31~) for C2, < 0. 

0.202. Figure 6 shows V-'Q/81f(0)12/yo = ,-19/8(-C2r)1/2/(2Clr), for C2, < 0, as function 
of M, for an adiabatic wall and for an isothermal wall with TBW = 1.8,1.0,0.6,0.2. Thus, 
we see that ,-19/8(-C2,)1/2/(2Clr) is greater than the incompressible value for an adiabatic 
wall and for an isothermal wall with TBW 2 1.0 but less than this value for a range of the 
local Mach number when T'w < 1.0. 

Thus, for an adiabatic wall and an isothermal wall with TBW 2 1.0 we require a 
larger value of the initial amplitude of the disturbance in the compressible case than in 
the incompressible case for the solution to become unstable. However, for some values 

From the results of MacKerrell (1987) for an incompressible flow -C2r)1/2/(2Clr) = 
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of the local Mach number for an isothermal wall with T’w < 1.0 we require a smaller 
value of the initial amplitude of the disturbance in the compressible case than in the 
incompressible case for the solution to become unstable. Clearly, from Figure 6, as the 
local Mach number increases the threshold amplitude is increased and thus we require a 
greater initial amplitude for the disturbed flow to become unstable for larger values of the 
local Mach number. 

5. CONCLUSION 

The main conclusion to be drawn is that the effects of compressibility greatly alter 
these stationary viscous modes of instability since they cannot exist for large enough Mach 
number. We find that the results for a compressible flow, when these stationary modes 
exist, are similar to those obtained by MacKerrell (1987) for an incompressible flow. The 
main difference occurs for highly cooled walls. For instance, the finite amplitude of the 
disturbance solution increases or decreases depending on whether r is less than or greater 
than the neutral position. In the same way as for the incompressible problem for particular 
values of M,. and TBW we have the idea of a threshold solution as described by Stuart (1971) 
for the finite disturbance amplitude. Thus, there exists a critical value of the amplitude 
of the initial disturbance below which the disturbance eventually decays to zero as the 
distance from the position of neutral stability is increased and the solution will be stable. 
However, if the initial amplitude of the disturbance is above the critical value the solution 
will end in a singularity at a finite radius and the solution will be unstable. For highly 
cooled walls (TBW 5 0.15) this threshold solution does not exist thus we have only unstable 
modes of instability. The nonlinear effects are found to be destabilizing for a compressible 
flow, which is also the case for an incompressible flow (see MacKerrell (1987)). It is found 
that for an adiabatic wall and an isothermal wall with T ~ w  2 1.0 the effects of nonlinearity 
are not as important here as for an incompressible flow and decrease as the local Mach 
number increases. But for an isothermal wall with T ~ w  < 1.0 the effects of nonlinearity 
can be more important for a compressible flow than for an incompressible flow. 

The weakly nonlinear analysis has enabled the effect of Mach number on the finite 
amplitude growth of a disturbance close to the neutral location to be described. Two cases 
of an adiabatic wall and an isothermal wail were investigated. It was found that the nature 
of the results was the same for an adiabatic wall and an isothermal wall with T ~ w  2 1.0. 
For these cases it was determined that the wavelength of the disturbance increases as the 
local Mach number increases. In addition, as the temperature of the wall is raised for an 
isothermal wall the disturbance wavelength increases. The orientation of the stationary 
vortices is described by the angle 8, where 8, is the angle between the tangent to the 
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vortices and the normal to the radius vector. As the local Mach number is increased we 
find that 8, decreases. For an isothermal wall as the temperature of the wall is increased 8, 
decreases. Thus, we observe that for an isothermal wall with T ~ w  2 1.0 increasing either 
the local Mach number or the temperature of the wall produces the same effect. For an 
isothermal wall with T ~ w  c 1.0 the same results apply with the exception that 8, may 
increase as the local Mach number increases. 

We now describe the main differences between our results for a compressible flow and 
those obtained by Hall (1986) and MacKerrell (1987) for an incompressible flow. We find 
that there is a larger mean flow correction in the normal direction in the lower deck for 
a compressible flow than for an incompressible flow, but otherwise the disturbance flow 
structures are the same. In Figure 1 we see that I'or1/2 is less than the value obtained by 
Hall (1986) for an adiabatic wall and also for an isothermal wall with T'w 2 1.0. Thus, the 
wavelength of the disturbance is longer in these situations than for an incompressible flow. 
However, for an isothermal wall with TBW < 1.0 the wavelength of the disturbance may be 
shorter than that for an incompressible flow. Figure 2 shows that ( a l / p ~  - a 0 p 1 / p ~ ) r 6 / 4  

is greater than the incompressible value obtained by Hall (1986) for an adiabatic wall and 
an isothermal wall with T ~ w  2 1.0. Hence, the angle of orientation of the stationary 
vortices 8, is smaller for these cases than for an incompressible flow. For an isothermal 
with T ~ w  < 1.0 8, may be larger than for an incompressible flow. 

From the nonlinear analysis we found that v ~ ~ / ~ C ~ ~  is less than the value obtained by 
MacKerrell (1987) for an incompressible flow for an adiabatic wall and for an isother- 
mal wall with TBW 2 1.0. Thus, in these cases the nonlinear effects are less important 
for a compressible flow than for an incompressible one although they are still destablish- 
ing. However, for an isothermal wall with TBW < 1.0 V1S/4Clr may be greater than the 
incompressible value in which case the nonlinear effects will be stronger than for an in- 
compressible flow. From Figure 4 we find that for highly cooled flows C,, may be zero or 
positive. Thus, in this case there will be no threshold solution with only unstable modes of 
instability present. From Figure 6 we see that for CZr < 0 F ~ ~ / ~  l f ( r i  = O)I2/yo is greater 
than the value obtained by MacKerrell (1987) for an adiabatic wall and for an isothermal 
wall with TBW < 1.0. The solution (4 .31~)  breaks down when yo = 2 / f i  which is the 
same value as for an incompressible flow. Hence, for an adiabatic wall and an isothermal 
wall with T B ~  2 1.0 for an unstable solution the initial amplitude of the disturbance for a 
'compressible flow must be larger than that required for an incompressible flow. But for an 
isothermal wall with T B ~  < 1.0 we require a smaller initial amplitude for the solution to 
become unstable. In addition, for a highly cooled wall there is the possibility of no thresh- 
old solution, the solution being unstable in this case. Thus, an unstable mode of instability 
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is more ikely to occur for a compressible flow with a highly cooled wall than for an in- 
compressible flow. For an adiabatic wall or an isothermal wall with TBW > 1.0 the system 
must be forced even more strongly for a compressible flow than for an incompressible flow 
for these stationary modes of instability to be evident. 

We found that these stationary viscous modes of instability do not occur above a critical 
supersonic local Mach number of about 1.57. This suggests that for small amplitude 
disturbances for values of the local Mach number greater than 1.57 the inviscid stationary 
modes described by Gregory, Stuart and Walker (1955) will be more dominant. Hence, 
for small amplitude disturbances it is unlikely that this mode would be observed in flows 
over bodies moving at very high Mach numbers. On the other hand, for values of the local 
Mach number less than 1.57, for highly cooled walls there is a strong possibility that the 
nonlinear effects may cause the early breakdown of the laminar flow. 
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16. Abstract 

This  work i n v e s t i g a t e s  t h e  e f f e c t s  of  c o m p r e s s i b i l i t y  on a s t a t i o n a r y  mode o f  
i n s t a b i l i t y  of t h e  three-dimensional  boundary layet: due t o  a r o t a t i n g  d i s c .  
a i m  i s  t o  de te rmine  whether  t h i s  mode w i l l  b e  impor tan t  i n  t h e  f i n i t e  ampl i tude  
d e s t a b i l i z a t i o n  of  t h e  boundary l a y e r .  
t h e  e f f e c t i v e  v e l o c i t y  p r o f i l e  having  z e r o  shear stress a t  t h e l w a l l i l  
s o l u t i o n s  are p r e s e n t e d  f o r  a n  a d i a b a t i c  w a l l  and a n  i s o t h e r m a l  w a l l .  
t h a t  t h i s  s t a t i o n a r y  mode is only  p o s s i b l e  o v e r  a f i n i t e  range  of  Mach numbers. 
Asymptotic s o l u t i o n s  are o b t a i n e d  which d e s c r i b e  t h e  s t r u c t u r e  of  t h e  wavenumber 
and t h e  o r i e n t a t i o n  of  t h e s e  mdoes as f u n c t i o n s  of t h e  l c o a l  Mach number. The 
e f f e c t s  of n o n l i n e a r i t y  are i n v e s t i g a t e d  a l l o w i n g  t h e  f i n i t e  ampl i tude  growth 
of a d i s t u r b a n c e  c l o s e  t o  t h e  n e u t r a l  l o c a t i o n  t o  b e  d e s c r i b e d .  The r e s u l t s  are 
compared w i t h  t h e  incompress ib le  r e s u l t s  of  P.  H a l l  (Proc.  R.  SOC. Lond. A406, 
93-106 (1986)) and S. 0. MacKerrell (Proc.  R.  SOC. Lond. A413, 497-513 (1987)) .  
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